当前位置:91开学网

 > 

知识点

 > 

公式考点

 > 

多边形的内角和是多少度

多边形的内角和是多少度

2024-01-23 11:52 369浏览

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。多边形的内角和是初中几何中的一个基础知识,但很多同学依然对此了解和掌握的程度不深,那么,接下来就为大家整理了详细的证明过程。

多边形的内角和是多少度

1、n边形的内角和等于(n-2)x180

注:此定理适用所有的平面多边形,包括凸多边形和平面凹多边形。

多边形的内角和与边数关系

1、在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。但是空间多边形不适用。可逆用:

n边形的边=(内角和÷180°)+2;

过n边形一个顶点有(n-3)条对角线;

n边形共有n×(n-3)÷2=对角线;

2、 n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形。

推论:

(1)任意凸形多边形的外角和都等于360°;

(2)多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3);

(3)在平面内,各边相等,各内角也都相等的多边形叫做正多边形。(两个条件必须同时满足)

反例:矩形(各内角相等,各边不一定相等);菱形(各边相等,各内角不一定相等)。

多边形内角和定理证明

证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。

比如像这样,

因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°。

所以n边形的内角和是n·180°-2×180°=(n-2)·180°。

即n边形的内角和等于(n-2)×180°。

证法二:连结多边形的任一顶点A1与其他各个顶点的线段,把n边形分成(n-2)个三角形。

因为这(n-2)个三角形的内角和都等于(n-2)·180°。

所以n边形的内角和是(n-2)×180°。

所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°。

已知正多边形内角度数,则其边数为:360÷(180-内角度数)。

相关例题

【典例1】

已知:一个多边形的内角和是1800°,求这个多边形的边数。

解:设这个多边形的边数为n,根据题意,得(n-2)180°=1800°则n-2=10,n=12。

点评:对于求多变形的边数n,常根据题设及有关定理列出关于n的方程来求。

【典例2】

一个多边形的每个内角都等于144°,求它的边数。

分析:设该多边形的边数为n,要求出n,需列出关于n的方程,这个多边形的内角和为(n-2)×180°,又因为“每个内角都等于144°”,则内角和也可以表示为144n,则(n-2)×180°=144n,由此可以求出n。

还可以这样考虑,由于这个多边形的每个内角都等于144°,则每个外角都等于180°-144°=36°,因此,n又可以由外角和来求。

解法一:设这个多边形的边数为n,根据题意,得

(n-2)×180°=144n,解得n=10。

解法二:设这个多边形的边数为n,根据题意,得

(180°-144°)n=360°,解得n=10。

上一篇:多边形的面积怎么求 下一篇:五边形内角之和是多少度

相关推荐