初等函数包括哪些
初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算及有限次函数复合所产生,并且能用一个解析式表示的函数。
初等函数包括哪些
初等函数是最常用的一类函数,包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数,以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。
幂函数
幂函数的图象一定在第一象限内,一定不在第四象限,至于是否在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点。
三角函数
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数,也可以等价地用与单位圆有关的各种线段的长度来定义。
正割函数
正割是三角函数的一种。它的定义域不是整个实数集,值域是绝对值大于等于一的实数。它是周期函数,其最小正周期为2π,正割是三角函数的正函数(正弦、正切、正割、正矢)之一,所以在2kπ到2kπ+π/2的区间之间,函数是递增的,另外正割函数和余弦函数互为倒数。
反双曲函数
反双曲函数是双曲函数的反函数,与反三角函数不同之处是它的前缀是ar意即area(面积),而不是arc(弧)。因为双曲角是以双曲线、通过原点直线以及其对x轴的映射三者之间所夹面积定义的,而圆角是以弧长与半径的比值定义。
余切函数
在在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。余切与正切互为倒数,用“cot+角度”表示。余切函数的图象由一些隔离的分支组成(如图)。余切函数是无界函数,可取一切实数值,也是奇函数和周期函数,其最小正周期是π。
对数函数
在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。
常函数
在数学中,常函数是指不管自变量值如何变化,函数值都不变的函数,形式为Y=C(X∈D(D是函数的定义域),且C为常数);在c++编程语言中,常函数是指使用const关键字声明的函数。
正切函数
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
反三角函数
反三角函数是一种基本初等函数。它是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx,反正割arcsecx,反余割arccscx这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。
指数函数
指数函数是重要的基本初等函数之一。一般地,y=a函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在a前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
初等函数的定义
初等函数是最常用的一类函数,包括常函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是基本初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。即基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的函数,称为初等函数。
非初等函数的研究与发展是近现代数学的重大成就之一,极大拓展了数学在各个领域的应用,在概率论、物理学科各个分支中等有十分广泛的应用。是函数的一个重要的分支。一般说来,大部分分段函数不是初等函数。如符号函数,狄利克雷函数,gamma函数,误差函数,Weierstrass函数。但是个别分段函数除外。
初等函数在定义域内一定连续吗
初等函数在其定义区间连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的,对于定义域的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域的区间上讨论连续性,这些区间,我们称之为函数的定义区间,初等函数在其定义域的区间(即定义区间)上是连续的。
连续函数的相关定理:
1、闭区间上的连续函数在该区间上一定有界。
2、闭区间上的连续函数在该区间上一定能取得最大值和最小值。证明:利用确界原理:非空有上(下)界的点集必有上(下)确界。
3、若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。
4、闭区间上的连续函数在该区间上一致连续。所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。
初等函数与复合函数的关系
复合函数就是由若干个初等函数复合而成的函数,一般是连续的(即函数图像上无暇点)原函数中的Y在复合函数中相当于X。一般而言求导的时候内外都要求导的那种就是复合函数。直接能导出来的就是初等函数。复合函数既包含了初等函数的一部分,又有自己的优点。