反函数关于什么对称
反函数是数学中的一种函数,就是将原函数中的自变量与变量相互调换,用原函数的变量来表示自变量而形成的函数。最经典的反函数就是对数函数与指数函数。
反函数关于什么对称
直线y=x对称
反函数图像关于直线y=x对称,对于表示y依x而变的已知函数y=f(x)来说,表示x依y而变的函数x=g(y)就叫做它的反函数,函数的定义通常分为传统定义和近代定义。
反函数的性质:
(1)互为反函数的两个函数的图象关于直线y=x对称;
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C}, 值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(5)一切隐函数具有反函数;
(6)一段连续的函数的单调性在对应区间内具有一致性;
(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;
(8)反函数是相互的且具有唯一性;
(9)定义域、值域相反对应法则互逆(三反);
(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2))。
如何求取反函数?
首先看这个函数是不是单调函数,如果不是则反函数不存在如果是单调函数,则只要把x和y互换,然后解出y即可。
例如 y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。