常见函数的导数公式
给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A)。那么这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
常见函数的导数公式:
1、三角函数的导数公式
正弦函数:(sinx)'=cosx
余弦函数:(cosx)'=-sinx
正切函数:(tanx)'=sec²x
余切函数:(cotx)'=-csc²x
正割函数:(secx)'=tanx·secx
余割函数:(cscx)'=-cotx·cscx
2、反三角函数的导数公式
反正弦函数:(arcsinx)'=1/√(1-x^2)
反余弦函数:(arccosx)'=-1/√(1-x^2)
反正切函数:(arctanx)'=1/(1+x^2)
反余切函数:(arccotx)'=-1/(1+x^2)
3、其他函数导数公式
常函数:y=c(c为常数) y'=0
幂函数:y=xn y'=nx^(n-1)
指数函数:①y=ax y'=axlna ②y=ex y'=ex
对数函数:①y=logax y'=1/xlna ②y=lnx y'=1/x
函数由来:
1、中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。
2、中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。
3、这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。
4、方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。
函数的特性:
1、有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
2、单调性
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点及,当时,恒有,则称函数f(x)在区间I上是单调递增的;如果对于区间I上任意两点及,当时,恒有,则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。