当前位置:91开学网

 > 

知识点

 > 

作家作品

 > 

多边形内角和公式是什么

多边形内角和公式是什么

2023-08-14 15:36 385浏览

多边形,数学用语,由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。

多边形内角和公式是什么

多边形的内角和等于(N-2)x180

1、此定理适用所有的平面多边形,包括凸多边形和平面凹多边形。

2、在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。但是空间多边形不适用。可逆用:

多边形的边=(内角和÷180°)+2;

过n边形一个顶点有(N-3)条对角线;

n边形共有N×(N-3)÷2=对角线。

多边形内角和定理证明

多边形内角和是运用三角形内角和推出,须把多边形分割成若干个三角形。分割方式有很多种。以某顶点作n一3条对角线把多边形分成n一2个三角形。故内角和为(n一2)x180度。

证法一:

在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.

因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°

所以n边形的内角和是n·180°-2×180°=(n-2)·180°.

即n边形的内角和等于(n-2)×180°.

证法二:

连结多边形的任一顶点A1与其他各个顶点的线段,把n边形分成(n-2)个三角形.

因为这(n-2)个三角形的内角和都等于(n-2)·180°

所以n边形的内角和是(n-2)×180°.

证法三:

在n边形的任意一边上任取一点P,连结P点与其它各顶点的线段可以把n边形分成(n-1)个三角形,

这(n-1)个三角形的内角和等于(n-1)·180°

以P为公共顶点的(n-1)个角的和是180°

所以多边形内角和公式n边形的内角和是(n-1)·180°-180°=(n-2)·180°.

上一篇:四棱锥的体积公式 下一篇:中国最长的朝代

相关推荐