当前位置:91开学网

 > 

知识点

 > 

史学热点

 > 

实数包括有理数和无理数吗

实数包括有理数和无理数吗

2023-12-04 15:25 800浏览

对于有理数和无理数的区分,很多初一的学生刚开始还没办法掌握,以至于会有实数包括有理数和无理数吗这样的疑问,其实实数可以用一句话表达,那就是实数就是无尽小数,循环的是有理数,不循环的是无理数。

实数包括有理数和无理数吗

包括

什么是实数

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

有理数和无理数的不同点

1、两者概念不同。

有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。

无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。

2、两者性质不同。

有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。

无理数的性质是由整数的比率或分数构成的数字。

3、两者范围不同。

有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。而无理数是指实数范围内,不能表示成两个整数之比的数。

与实数相关的基础知识

1、数轴

规定了原点、正方向和单位长度的直线叫数轴。

数轴上的点和实数是一一对应关系。

2、绝对值

在数轴上表示一个数的点与原点的距离叫这个数的绝对值,距离不能为负,所以一个数的绝对值也不能为负,即|a|≥0。

3、相反数

只有符号不同的两个数叫作互为相反数,也就是说互为相反数的两个它们绝对值相同、符号相反,即互为相反数的两个数和为0:a+b=0。

4、倒数

乘积为1的两个数互为倒数,也即互为倒数的两个数乘积为1:ab=1。

注意:0没有倒数。

5、科学计数法及近似数

科学计数法:科学计数法的表示形式为a×10^n,其中1≤丨a丨<10,n为整数。

6、近似数及有效数字

一个近似数四舍五入到哪一位,就说它精确到哪一位。

这时,从左边第一个不是零的数字起到右边精确的数位置的所有数字,都叫做这个数的有效数字。

7、平方根

如果一个数的平方等于a,就说这个数是a的平方根(或称为二次方根)。

一个正数有两个平方根,它们互为相反数,0的平方根还是0,负数没有平方根。

8、算术平方根

一个数的非负的平方根叫作这个数的算术平方根。

9、三次方根(立方根)

如果一个数的立方等于a,那么这说这个数是a的立方根(三次方根),任何实数都有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根还是0。

实数的运算同样适用有理数的运算律及运算法则。

上一篇:任何分数一定是有理数对不对 下一篇:两平面平行可以得出什么

相关推荐